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KORTEWEG-DeVRIES-BURGERS EQUATIONS* 

N. S. ZAKBAROV and V. P. KOROBEINIKOV 

Methods of group theory /l/ are used for analyzing the generalized Korteweg-DeVries 

-Burgers equation which defines the effects of nonlinearity, dispersion, and 
dissipation in many problems of continuous medium mechanics. Solutions belonging 
to the class of invariant solutions are obtained. The possibility of using these 
solutions in problems with initial conditions is considered. 

1. Let us consider the generalized Korteweg-DeVries-Burgers equation of the form 

I),, i 11 ,,i dil dill $11 
t i- 7 t -I- I'!( 5 p 3 /- fi F 0 (1.1) 

where i = 0,1,2 for the cases of plane, cylindrical, and spherical symmetry, respectively, 

m, Y, P9 B are some constants, u(3,t) is the sought function, z is a space coordinate, and t 
is the second independent variable (the time). 

Particular cases of Eq.(l.l) are encountered in investigation of waves in cold plasma 

/2--5/t in magnetohydrodynamics /6/, in the theory of motion of a fluid with bubbles /7/, and 

in problems of nonlinear acoustics /8/. We obtain invariant solutions of this equation using 
the method of group analysis /l/. 

Besides determining the algebra of operators admitted by Eq. (l.l), optimal systems of 

subalgebras were sought and, also, the respective one-parameter subgroups and invariant solu- 

tions were analyzed. This analysis enabled us to obtain all invariant solutions constructed 

on dissimilar subgroups. The optimal system of subalgebras is given below, as an example, 

for i =2, m=l, and p=O. In remaining cases only the more interesting in the authors' 

opinion, invariant solutions are presented. 

First, let us consider the case of plane symmetry (1 : IJ). Then when p+O,fl+O we have: 
when m= 1 Eq.(l.l) admits the following transform operators: 

when m= 0 Eq.(l.l) is linear, the operator space is infinite dimensional, but the mean- 

ingful part is contained in the space of operators L, 

when m#O,m+l only two operators remain 

a a 
x,=yg, x2- x 

(1.3) 

Each of the operators (1.2)- (1.4) or their linear combination with constant coefficients 

generates group G, admitted by Eq.(l.l). For function F(z,t)+const to be an invariant of 

group G1 with operator X it is necessary and sufficient that the equality XF (x, t) = 0 is 
satisfied. For instance, for group G, defined by operator X = aX,+X,. IX = con&, I = t --at is 
the invariant, and Ic (2, t) = u (z - at) is the invariant solution which is called stationary. 

2. In what follows we assume m = I. When *>=i,p=O, (1.1) is a Korteweg-DeVries 

equation. 
In the plane case it admits the following transform operators: 

to which correspond the invariant solutions 

u1 = CJ (f), u1 = (i(I), % = f + u (t), u,= +%Y (h), ~=-?- t'i. 
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The last solution is also called the self-similar solution of the Korteweg-DeVries 

equation /2/. In addition tothe indicated stationary solution U = U(z - at) investigated 

in detail in /5/, we shall consider group G, defined by the operator x = ax,-+ x,. Here, 

I, = I - t2/ (Za) and I, = ecu - t are the two independent invariants, and the invariant solution 
is of the form 

ti- rJ (k) 
lI(+, ')- 7 , h-g (2.1) 

The substitution of (2.1) into the Korteweg-DeVries equation yields 

from which after integration and substitution 

y (2) = -fi (lzaB2)-"'U (n), .z = (12 a~~)-% 

we obtain the equation y" = 6y2 + z + C which yields known transcendental functionsofPainlev&. 
We also point out the invariant solution 

which is the same as the self-similar solution for a = 0. 
In the cylindrical case the Korteweg-DeVries equation admits the following transform 

operators: 

and in the spherical case 

The invariant solutions corresponding to groups with extension operators x,(j = 1) and 
x, (; = 2) are, obviously, self-similar solutions of the Korteweg-DeVries equation. Moreover, 
when i= 1 we have invariant solutions of the form 

11(X, t) --: -&- 4 U (t), u (I, ‘) = z/z~;-U(;i) t , x = It-‘/~ 

Let us investigate ingreaterdetail the case of j = 2. Using the methods in /l/ it is 
possible to show that in this case the optimal system of subalgebras is of the form 

x1,x,, x,, x1 + x,, x,+x,, x,+x, 
The respective invariant solutions are 

u1= u (% u,-J-1 tint -rU(% 4=fW). ), I It-‘, * 
z 

4= t(Inr_F,) -‘-U(f), u5 Z L-‘,“u (h), i.= (Zfl) t-*;a 

1Q = t-““u (A) - 1 / t. a = (z -; In t ;- 3) t-l” 

There are no other solutions on dissimilar subgroups. 
If y=O with p=O,b#O, we have the linearized Korteweg-DeVries equation which ad- 

mits an infinite dimension space of transform operators but the meaningful part is contained 
in the subspace of operators L, 

Derivation of all possible invariant solutions is now not difficult. 

3. When u=i,F#O,B=O, Eq.(l.l) is the known Burgers equation. The total system of 
admissible operators is 

a a d a 
, = (1: x1--& X,=z~+ff-g-‘L~, s, -= z 

d a 
x,=tz+t;i;;, X,=rt&t~~+(~--_‘t)~ 

a a 
i=t: XI-~-j--, 

a a 
X1:- z,+zt,-UK 

..,_,$&&.‘.A-& 
I/t 

, =2: x,- ;. X,: .++ zt-&~ 
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Invariant solutions in the case of )=O were also investigated by Katkov (see /l/). 
When the operators are known it is possible to obtain a complete system of invariantsolutions, 
which is not presented here. We would only point out that the substitution (2.1) for i=o 
reduces the Burgers equation to that of Riccati. By the substitution 

u (4 q - 2P 
a ho (r. f) 

d.r 

the Burgers equation reduces for j--O to the thermal conductivity equation 81 = p&l /9/. 
A large number of respective solutions is given in /lo/. Although transform (3.1) is not 
invariant, there are many invariant solutions among those listed in /lo/. For instance 

is an invariant solution that corresponds to the group with operators X,. Solutions (2.1)- 
(2.5) and (3.5) in /lo/ are of this type, but not all solutions of type 
ed there. For instance, from among the set of invariant SOlUtiOnS 

CL 
II (5, ‘) = f + +-- z ( c,, C? = co1wt 

c,-q-i_ 

that correspond to solutions 

O(r, r)=(C,-cC,f)t-‘.~exp(_~~ 

only two solutions that obtain when C, = 0 and C,=O appear in /lo/. 

4. Let us consider the problem of point explosion for the Burgers 
We use the self-similar solution based on the extension operator X2. 

equation when j = 0. 
The ordinary second 

order differential equation derived from the Burgers equation is integrable, and the solution 
of this problem is of the form 

(3.2) are represent- 

(4.1) 

A direct substitution will show that (4.1) is a solution of the Burgers equation. It is 
evident that 

Q.E.D. /ll/. 
Solution (4.1) can be also obtained using the substitution (3.1) /12/. 
The results of this investigation of the Korteweg-DeVries-Burgers equation may prove 

useful for deriving new exact solutions, in the investigation of nonlinear wave properties, 
and in other physical problems. 
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